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Abstract

The ongoing COVID-19 pandemic has revealed a gap in our ability to forecast the evolution
of the epidemic. While the widely used compartment models [I], 2] are a reliable tool to
analyse the basic dynamic properties of the virus transmission [3], they struggle to represent
the impact of the intervention measures on the virus spread in advance, especially in the
declining stage of the epidemic, when the infected population is low and the assumption of
homogeneous mixing becomes invalid [4]. Here, we have constructed a social network of more
than 2 million nodes, each representing an inhabitant of Slovenia. The nodes are organised and
interconnected according to the real household and elderly care center distribution, while their
connections outside these clusters are semi-randomly distributed. The virus spread model is
coupled to the disease progression model. Here, we compare the efficiency of strategies for
the coronavirus impact mitigation and containment such as central quarantine and contact
tracing. We show that people who infect many others, so called superspreaders, become
increasingly important also in the declining stage of the epidemic. The ensemble approach with
perturbed disease spread parameters and clinical parameters is used to quantify the ensemble
spread, a proxy for forecast uncertainty. Such network models also allow to assimilate real-
time data of the network properties, such as connectivity based on the mobile traces or
mobility data. It also allows to assimilate the data about positively tested and patients
such as age, sex and comorbidities. The approach should mimic an already established data
assimilation approach in numerical weather prediction [5l [6] to make us more prepared for
the next big pandemic.

1 Introduction

There are several ways to simulate the pandemic dynamics. The most common approach is to
solve a system of differential equations given some predefined parameters. These epidemic models
are widely known as susceptible (S), immune (I), recovered (R), i.e. SIR models [I, 2]. Another
variation of SIR models is SEIR model, which accounts also for the exposed (E) - infected subjects
which are not yet infectious themselves. SEIR models are combined with complex transfer or
activation functions which are used to smoothly model social factors affecting virus spread, disease
progression and to account for the probability distributions of their length. A major setback of
the deterministic epidemic models is that they are only valid for sufficiently large populations [7].

In this study, we perform computationally more expensive node-based approach to simulate
the virus spread. We simulate the spread over a realistic social network of more than 2 million
nodes with a total of up to 15 million connections, representing the population of Slovenia and
the connections of their inhabitants. A hard-to-overcome limitation of the SIR model and its
variants is that the information is homogeneously spread. In reality, there are some who spread
the information or virus more - so called superspreaders. Another advantage of such approach is
that it allows to realistically simulate the quarantine orders of the decision bodies. Furthermore,
it allows to simulate strategies for the disease containment and optimal case testing strategies.
[8, @] Section 2 describes the model and its parameters. Section 3 demonstrates four different
deterministic scenarios of the pandemic dynamics. Section 4 presents the results and the most
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Table 1: Households distribution in Slovenia.

likely outcome of the epidemics based on the ensemble computations which include the uncertainty
of the input parameters. Section 5 discusses the potential strategies for the control of the COVID-
19 pandemics. Discussion, conlusions and further outlook are given in Section 6.

2 Methodology

2.1 Social network model

The social network of the inhabitants of Slovenia is constructed based on the recent data of
Statistical Office of Republic of Slovenia [I0]. A total of N = 2045795 nodes is used in the social
network. The number of k-person households is given in Table There are approximately 100
elderly care centers in Slovenia with a total of approximately 20000 residents. Each elderly care
center is assumed to include 8 distinct groups of 25 people.

Average household/care group has 2.5 people in Slovenia so the average number of contacts
per person within household is 1.5.

Connectivity distribution in normal conditions follows power law distribution with fat tails [11],
which are associated with superspreader events in pandemic dynamics. However, since all public
events are canceled, those fat tails are cut off [I2] and the topology of the social network changes
drastically. In quarantine conditions, a reasonable assumption is to model the connectivity, i.e.
the number of contacts per person using the gamma probability distribution, which is essentially
an exponential distribution .

ik, 0) = e e (1)
In this study, we used k£ = 0.3 and 6 = 22.5 for the initial setup, which gives an average number
of 13.5 outer contacts per person per day (Figure [1)). Together with 1.5 family contact per day,
the total number of contacts per person per day is 15. Here, we assume that the average contact
number is the same for each age group, despite studies showing seniors have reduced number of
contacts already in normal conditions [I3]. Another study shows that Italians have on average
almost 20 contacts per day, Germans around 13.5, so 15 contacts per day is a reasonable guess for
Slovenia [I4].

Technically, we connect the graph in the following way

1. numbers of contacts for each node are randomly drawn from Gamma distribution . If
node 7 has x; = 0.33 contacts per day, it means that it will have 0 contacts 2/3 of the time
and 1 contact 1/3 of the time of the simulation

2. for each node i we randomly assign the connections to x; other nodes, where x; is the number
of contacts of node i. However, the assignments do not have equal probability. Node j which
has z; contacts is picked as a neighbour with probability x;N(z;)/T, where N(x;) is the
number of nodes with x; contacts and 7" is the total number of contacts in the network,
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Figure 1: Number distribution by the number of contacts in social network.

two times the number of connections. Sampling over Gamma distribution gives us a
distribution of N(z) = p(x)N. When picking the neighbours, we actually sample the same
Gamma distribution times z, i.e.

Fe™ 7 o p(x;k+1,0) (2)

pn(z) = p(z;k, 0)z = T (k)oF

3. The shape of the social network is changing at every time step of the simulation to account
for people’s mobility. (a) The number of contacts of node i is fixed (randomly jumps between
|x;| and [z;] based on the value of z;). For example, if a node has 0.33 contacts per day, 1
contact is picked with probability 1/3 and 0 contacts with probability 2/3. (b) The social
network is rewired at every time step to account for superspreaders mobility. Note that
rewiring might not be a good choice for those with low number of contacts.

2.2 Virus spread parameters

Reproduction number R, A basic reproduction number, Ry, only provides the info on the
average dynamics of transmission, however it is crucial to understand what settings drive the
virus spread. Different methodologies produced different results, however the majority of reported
numbers is within 2 and 3. Here, we use median reported Ry from a number of studies, as well
as its median confidence intervals, i.e. Ry = 2.68, with 95% confidence interval [2,3.9]. This
approach is surely not the optimal one, since we are trading accuracy for precision. The published
Ry values as well as our deduced Ry distribution is shown in Figure 2] The optimal log-normal
distribution should match the following conditions:

e CDF(R}; p, 0, Ax) = 0.05,
e CDF(RY; u, 0, Az) = 0.95,
e median(CDF) = Ry,
where CDF stands for log-normal cumulative distribution function, i.e.

1 1 1 CAz) —
CDF(x; p, 0, Ax) = 3 + ierf {n(a}\/ﬁ:)u}
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Figure 2: a) Basic reproduction number Ry, reported in number of studies, which can be found in
Wu et al. [15], Kucharski et al. [16], Li et al. [9], Liu et al. [I7] and references therein. b) Log-normal
probability density function of the basic reproduction number, used for ensemble simulations.

and median being exp(u). Then, we define a quadratic cost function, which includes all the above
criteria, and by minimizing it, we obtain the optimal parameters for log-normal distribution:
Az =0.36,0 = 1.14,exp p = 1.54.

Attack rate In general, the basic reproduction number, Ry can be decomposed into the sec-
ondary attack rate times the number of contacts. The secondary attack rate (SAR) is defined
as the probability that an infection occurs among susceptible people within a specific group (i.e.
household or other close contacts). The measure can provide an indication of how social inter-
actions relate to transmission risk. We can further decompose the Ry into the household risk of
infection and outer risk of infection (following [I§])

Ry = SAR,N;, + SAR.N,, (4)

where SAR), and SAR, are secondary attack rates within household and outside household (outer
contacts) and Nj, and N, are the numbers of risk contacts made. The study of Liu et al. [I§]
suggest SARy, value of 35% (95% CI 27-44%).

SARy, is almost normally distributed with mean 35% and 20 = 8.5. The distribution of Ry
is given in the previous paragraph. It holds: SAR. = (Ry — SARy, x Np)/N.. This gives a
transmission efficiency of SAR. = 0.16. Figure |3| shows probability distributions of secondary
attack rates as used in the ensemble of simulations.

Given the infectious period of T, s &~ 10 days (incubation period Tj,. ~ 5 days minus 2 days
+ another week, check subsection , we can assume that the daily risk of getting infected from
a certain household member is SAR}, qairy where 1 — (1 — SARh,daily)m = SARy, and

SARh,dm‘ly =1- exp <1SARh> (5)
T%nf

being equal 4.2% (3.1-5.6%). Similarly, we compute SAR. gairy = 1.7%.

Some studies [e.g. [I9] have concentrated only on the symptomatic secondary attack rates and
have shown relatively smaller numbers: 0.45% (CI=0.12%-1.6%) among all close contacts and
10.5% (CI=0.12%-1.6%) among household members. However, these numbers cannot reproduce
the reported Ry between 2 and 3.9 with realistic number of contacts. Another study shows similar
attack rates we use in this study [20].
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Figure 3: Probability distribution of secondary attack rates for household contacts and outer
contacts.

2.3 Disease and hospitalization parameters

A simplified sketch of the simulation is shown in Figure [} Note that for every node, that illness
evolves differently based on the probability distribution described below. Note that for every
member of the ensemble, the parameters of the distributions are perturbed according to known
statistical values.

Case fatality ratio The baseline case fatality ratio (CFR), fatality ratio among all positively
tested, is assumed 1.38% (CI 1.23-1.53%) 211, 22]. Dividing deaths-to-date by cases-to-date leads
to a biased estimate of CFR, called naive CFR (nCFR) as the delays from confirmation of a case
to death is not accounted for, as well as due to under-reporting of cases. The reported numbers
agree with recently published study for symptomatic case fatality ratio in China [23].

Infection fatality and hospitalisation ratios Infection fatality ratio (IFR) estimates are
based on the study from Verity et al. [2I] and are taken to be 0.9% with 95% confidence interval
0.4% to 1.4% (95% CI is 20 for normal distribution). These estimates are consistent with IFR
on Princess Diamond Cruise ship and were used also in Ferguson’s Imperical College report [24].
However, the countries vastly vary in demography. The study was performed for China with
median age of 37.4 years. Slovenia has a median age of 44.5 years. The study also found an
increasing infection fatality profile in age (Tabl. These profile is used to determine the effective
infection fatality rate for Slovenia. Performing a weighted average, we use the total IFR of 1.16%
(CI 0.63-2.22%). Analogously, we compute the average hospitalisation rate of 6.37% (95% CI
3.8-13%). Using the minimization procedures, we obtain parameters of log-normal distribution
which best fits both values and their 95% confidence interval (Figure [5).

Incubation period - infection to illness onset Mean incubation period is taken to be 5.0
days (95% CI 4.2-6.0), while the 95th percentile of the distribution was 10.6 days (95% CI 8.5-14.1)
and 99th percentile 15.4 days (99% CI 11.7-22.5) [26]. Similar numbers were reported in an earlier
study which included less patients [9 27]. Log-normal distribution is used among for incubation
period among nodes. However, the parameters of the lognormal distribution remain fixed due to
numerical instability of their computation. Thus, all ensemble members have the same log-normal
distribution of incubation period. Incubation period distribution and other outcome parameters
are shown in Figure [6]
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Figure 4: Simplified sketch of illness evolution.
Age group | IFR (95% CI) IHR (95% CI) Ratio of total population in SLO
0to9 0.0016% (0.000185,0.0249) | 0% (0,0) 0.102
10 to 19 0.007% (0.0015,0.050) 0.04% (0.02, 0.08) | 0.093
20 to 29 0.031% (0.014,0.092) 1.1% (0.62, 2.1) 0.102
30 to 39 0.084% (0.041,0.185) 3.4% (2.1, 7.0) 0.140
40 to 49 0.16% (0.076,0.32) 4.3% (2.5, 8.7) 0.146
50 to 59 0.60% (0.34,1.3) 8.2% (4.9, 16.7) 0.145
60 to 69 1.9% (1.1,3.9) 11.8% (7.0, 24.0) 0.135
70 to 79 4.3% (2.5,8.4) 16.6% (9.9, 33.8) 0.083
80+ 7.8% (3.8,13.3) 18.4% (11.0, 37.6) | 0.054

Table 2: Estimates of the proportion of all infections that would be hospitalised (IHR) or fatal
(IFR) by age group. Disease data from Verity et al. [2I]. Population data from PopulationPyra-

mid.net [25].
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Figure 5: Infection fatality ratio distribution and infection hospitalisation ratio distribution for
ensemble simulations.
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Figure 6: Incubation period, illness onset to hospitalisation and illness onset to death distribution
among COVID-19 patients.
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Figure 7: Mean distribution of hospital admission to death, hospital admission to hospital leave
for severe and for non-severe illness.

Infectious period The infectious period starts Tstq+ = 2 days before the end of incubation and
likely ends around day T,nq = 5 from symptoms onset [28], i.e. Tine — Tstart + Tena =~ 10 days,
where average incubation period lasts 5 days. Note that none of the interval boundaries are known
exactly, however several cases are known where infected transferred the virus before developing
symptoms. Thus, we randomly perturb Tsq¢ = N(3,0.5). The final boundary of the interval is
more tricky, as it is dependent on the length the infectious person interacts with surroundings.
Currently, we do not have a central quarantine for positively tested cases, however the infectious
with symptoms are likely to more strictly isolate themselves, thus T.,,q = N (2.5,0.5). Thus, whole
families or elderly care centers get infected. The infectious period fall in line with study of Bi
et al. [20], Figure S2.

Illness onset to hospital admission We take mean numbers from the study of Linton et al.
[26] and its distribution: mean is 3.9 days, median 1.5 days, 5% percentile at 0.2 days and 95%
percentile at 14 days. Since we now understand the severity of the illness, only the distribution
of data for living patients is accounted for. In China, those who died waited longer to visit the
doctor.

Illness onset to death Mean 14.5 days, median 13.2 days, 5th percentile 6.5, 95th percentile
26.8 [26]. Similar numbers were reported by Russell et al. [22].

Hospital admission to death Mean 8.6 days, median 6.7 days, 5th percentile 2.2, 95th per-
centile 20.5, 99th percentile 32.6 days [26]. Shown in Figure

Hospital admission to hospital leave Hospital admission to recovery is on average longer
than hospital admission to death. While the full recovery is important for economy, hospitalisation
length is more important for the state of healthcare system. The median hospitalisation length
is 11 days (95% CI 10-13) for non-severe cases and 13 days for severe (95% CI 11-17) [26]. Both
are log-normally distributed. For ensemble computations, their medians are further log-normally
distributed according to their respective confidence intervals.



Similar numbers: mean (larger than median for lognormal distribution) hospital length of stay
and ICU length of stay are 11 days (95% CI 7-14) and 8 days (95% CI 4-12) were reported by
Zhou et al. [29].

Other parameters - review!? TFatality ratio of severe cases in need of intensive care is 50%.
Fatality ratio of severe cases without intensive care is normally distributed with mean of 90% and
o = 5%. Fatality ratio of severely ill without oxygen is 10% with ¢ = 5%.

2.4 Initial condition

The initial condition for the simulation is defined for March 12, 2020. To that day, there were
131 symptomatic cases who tested positive, 8 days after first positive case, which implies an
anomalously low doubling time of 7 = 1.23 days. This number is case specific as there was winter
holiday in Slovenia at the end of February and beginning of Match, when lots of people went
skiing to Italy (including Lombardy). Most of the initial cases were imported [?7]. Other studies
typically suggest a doubling time of around 5 days (95% CI 4.3 - 6.2) in the initial uncontrolled
stage of the epidemic [30]. However, Abbott et al. [31] report smaller values of around 3.5 days
in most of Western Europe. Thus, our choice is doubling time of Tyoupe = 3.5 days, normally
distributed with ¢ = 0.5.

Different numbers of actually infected people were suggested in the media reports, ranging
from 5 to 10 times the number of reported positive cases. Given the average incubation pe-
riod of 5 days + (1 day for visit) and somewhat smaller doubling period of 3.5 days, factor

Tipctl

2T4ouric = 3.3 applies. Furthermore, the proportion of asymptomatic cases is around 18% based
on the data from Diamond Princess Cruise Ship [32] (mostly older people) and around 33%
based on the more recent study [33]. There have been reports from Iceland and an Italian town
Vo which underwent vast testing, that nearly 50% of positively tested are asymptomatic. We
opt for 40%, normally distributed with std. of 10%. This means that more than 700 people
were infected in Slovenia on March 12. Factor 5.5 is somewhat smaller than the assumption of
Kucharski et al. that only 16% of onsets are known https://cmmid.github.io/topics/covid19/
current-patterns-transmission/wuhan-early-dynamics.html|

Based on the exponential growth in initial stage and incubation period, we randomly generate
the infection length of the patients with exponential distribution with shape factor of 4.9, so that
131 people have infection for more than 5 days and develop symptoms. Initial distribution of 131
infected people by the time-length of their infection is shown in Figure |8l Note that in reality, due
to many imported cases, the actual distribution may be different.

2.5 Limitations
e Nodes do not have age as property.
e Contacts are not distributed by age. Older have less connections.

3 Results

3.1 The effect of superspreaders
TBD

3.2 Prediction for Slovenia issued on March 28, 2020

Predictions of the evolution of COVID-19 pandemic are issued daily. New data is taken into
account to correct the forecast. However, to accurately simulate the impact of government action
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Figure 8: Distribution of 131 infected people on March 12, 2020, in Slovenia, by the time-length
of their infection.

in advance, connectivity data of our real social network should be provided, e.g. based on the
mobile phone traces etc.

Forecast issued on March 28, 2020, simulated from the initial condition on March 12, 2020 is
avaiable at https://fiz.fmf.uni-1j.si/~zaplotnikz/2020_03_28/ and is shown in Figure [9]
750 ensemble members were used to compute the uncertainty of the prediction. The likely outcome
of the epidemics is within 25th and 75th percentile.
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Figure 9: Forecast of COVID-19 pandemic in Slovenia issued on March 28, 2020 and comparison
with real data. Median values along with 25th-75th percentiles of the ensemble members spread

are shown.
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Long-term forecast with present action is shown in Figure [I0] Note that with the existing
quarantine measures, the epidemics will not go away, we are just going to slow it down and to
flatten the curve. Existing quarantine measures might not be efficient for such long time. Some
options to control it faster are shown in the following section.

4

COVID-19 Pandemy in Slovenia

10°

104 4

-

o
W
L

Number of nodes

=

o
©
L

m— Symptoms
Hospitalised
— |CU
— Fatal
® Positive cases (data)
Hospitalized (data)
® ICU (data)
@® Fatal (data)

101 4

10° - T T T
S o
YRS I I I I T I IS SIS IS g2
S S ¥ ¥ D
C & § § § @ @ @& ¢ §&§ §&§ £ 3933 ¢ 3§59 9§ ¢ ¢ ¥ 9@
S &I & S 3 I S & & L L L L 8
F LT T T T T ITINTSSTY S g9 FfEFEFS

Figure 10: Same as Figure [J] but for 220 day interval.

Strategy

The main strategic points would be:

Quarantine should be as strict as possible to prevent epidemics lasting too long.
Restriction of travels, which prevents community-to-community spread [34].

Introduce central quarantine unit for infected (strict isolation from their families) to prevent
spread of the disease to household members, from which the transmission is most probable
[3, B0]. Social distancing alone is not enough.

Tracing of potential secondary and tertiary contacts and quarantine. Bi et al. [20] have
shown that while the cases were isolated on average 4.6 days after developing symptoms,
contact tracing reduced this by 1.9 days.

Telecommunication data or mobile app data would be needed to track the potential secondary
(or even tertiary) contacts.

Use telecommunication data to analyse the connectivity of the social network. This way, we
could could immediately simulate the effect of government action.

Recent study (under review) has shown, that contact tracing is successful only for the case
of low Ry [35]. For example, around 50% (70%) of cases would need to be traced for
Ry = 1.5(2.5) if we are to controll the outbreak.

Widespread testing and inclusion of recovered back into society.
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e The survival ability of SARS coronavirus in human specimens and their environments is
relatively strong, however UV and heating (such as in cars exposed to sun, playgrounds etc.)
dan efficiently eliminate the viral infectivity [36] and reduce the environmental transmission.

Further strategy to control the epidemics can be found at https://www.endcoronavirus.org/.

4.1 Central quarantine or isolation away from family members, nursing
home residents and others

Strict isolation away from family members and other contacts is ordered from April 1 on. Epidemic
evolution is shown in Figure Note that at the peak of the pandemics at the end of April and
the beginning of May, the number of patients requiring ICU drops by half from 220 to just around
110 with existing quarantine orders. The number of hospitalised patients would similarly fall from
around 800 to 400.
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Figure 11: Same as Figure [9 but for strict isolation of symptomatic cases from April 1 on.

4.2 Quarantine of secondary infections

We can define illness onset (developed symptoms) to isolation function, similarly as inHellewell
et al. [35]. Two parameters are important: percentage of tracked and the delay. Isolation efficiency
is assumed 100%. In the case of short delay, we track and isolate potentially infected before they
develop symptoms, but in the case of long delay, we only isolate them when they start developing
Ssymptoms.

TBD

TBD

5 Conclusions
Accurate models of the real-world social networks are needed to realistically simulate the topolog-

ical dynamics of the epidemics. Similarly to Numerical Weather Prediction models [5], [37], the real
connectivity data obtained by postprocessing of the phone traces, should be rapidly assimilated
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into the virus spread prognostic model [e.g. [38]. This would allow 1) to estimate the critical virus
spread parameters, needed for accurate forecasts of the pandemics, and 2) to better prepare a
strategy of the virus containment, potentially saving thousands of lives, minimizing the economic
damage and enhancing people’s mobility.

Further work

Acknowledgments

The authors are grateful to Aleks Jakulin () Miha Kadunc (Sinergise) and Luka Renko (COVID-
19 sledilnik) for providing the timely COVID-19 pandemics data for Slovenia. Ziga Zaplotnik
would like to thank prof. Alojz Kodre and Simon Copar for introducing him the node-based
analysis of the information spread. Arthur Breitman is thanked for an interesting question on the
basic properties of the virus transmission dynamics related to superspreaders. We thank fellow
physicists Nejec Davidovi¢, Jan Bohinec and Luka Medic. Special thanks go to Roman Jerala and
Tomaz Zwitter for discussions of the model, and for reading and commenting the scripts as well
as providing useful literature.

References

[1] William Ogilvy Kermack and A. G. McKendrick. A contribution to the mathematical theory
of epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of
a Mathematical and Physical Character, 115(772):700-721, aug 1927. ISSN 0950-1207. doi:
10.1098/rspa.1927.0118.

[2] Herbert W Hethcote. The Mathematics of Infectious Diseases *. Technical Report 4, 2000.
URL http://www.siam.org/journals/sirev/42-4/37190.htmll

[3] Chaolong Wang, Li Liu, Xingjie Hao, Huan Guo, Qi Wang, Jiao Huang, Na He, Hongjie Yu,
Xihong Lin, An Pan, Sheng Wei, and Tangchun Wu. Evolving Epidemiology and Impact of
Non-pharmaceutical Interventions on the Outbreak of Coronavirus Disease 2019 in Wuhan,
China. medRziv, page 2020.03.03.20030593, mar 2020. doi: 10.1101/2020.03.03.20030593.

[4] Michael Y. Li, John R. Graef, Liancheng Wang, and Jénos Karsai. Global dynamics of a
SEIR model with varying total population size. Mathematical Biosciences, 160(2):191-213,
aug 1999. ISSN 00255564. doi: 10.1016/S0025-5564(99)00030-9.

[5] Eugenia Kalnay. Atmospheric modeling, data assimilation, and predictability, volume 54.
2003. ISBN 9780521791793. doi: 10.1256/00359000360683511.

[6) William A. Lahoz and Philipp Schneider. Data assimilation: making sense of Earth
Observation. Frontiers in Environmental Science, 2(May):1-28, 2014. ISSN 2296-665X.
doi:  10.3389/fenvs.2014.00016. URL http://journal.frontiersin.org/article/10.
3389/fenvs.2014.00016/abstract.

[7] M. S. Bartlett. Measles Periodicity and Community Size. Journal of the Royal Statistical
Society. Series A (General), 120(1):48, 1957. ISSN 00359238.

[8] Li Qun Fang, Yang Yang, Jia Fu Jiang, Hong Wu Yao, David Kargbo, Xin Lou Li, Bao Gui
Jiang, Brima Kargbo, Yi Gang Tong, Ya Wei Wang, Kun Liu, Abdul Kamara, Foday Dafae,
Alex Kanu, Rui Ruo Jiang, Ye Sun, Ruo Xi Sun, Wan Jun Chen, Mai Juan Ma, Natalie E.
Dean, Harold Thomas, Ira M. Longini, M. Elizabeth Halloran, and Wu Chun Cao. Transmis-
sion dynamics of Ebola virus disease and intervention effectiveness in Sierra Leone. Proceed-
ings of the National Academy of Sciences of the United States of America, 113(16):4488-4493,
apr 2016. ISSN 10916490. doi: 10.1073/pnas.1518587113.

13


http://www.siam.org/journals/sirev/42-4/37190.html
http://journal.frontiersin.org/article/10.3389/fenvs.2014.00016/abstract
http://journal.frontiersin.org/article/10.3389/fenvs.2014.00016/abstract

[9]

[12]

[13]

[15]

[16]

[17]

[18]

[19]

Qun Li, Xuhua Guan, Peng Wu, Xiaoye Wang, Lei Zhou, Yeqing Tong, Ruiqi Ren, Kathy S.M.
Leung, Eric H.Y. Lau, Jessica Y. Wong, Xuesen Xing, Nijuan Xiang, Yang Wu, Chao Li,
Qi Chen, Dan Li, Tian Liu, Jing Zhao, Man Liu, Wenxiao Tu, Chuding Chen, Lianmei Jin,
Rui Yang, Qi Wang, Suhua Zhou, Rui Wang, Hui Liu, Yinbo Luo, Yuan Liu, Ge Shao, Huan
Li, Zhongfa Tao, Yang Yang, Zhigiang Deng, Boxi Liu, Zhitao Ma, Yanping Zhang, Guoqing
Shi, Tommy T.Y. Lam, Joseph T. Wu, George F. Gao, Benjamin J. Cowling, Bo Yang,
Gabriel M. Leung, and Zijian Feng. Early Transmission Dynamics in Wuhan, China, of
Novel Coronavirus—Infected Pneumonia. New England Journal of Medicine, jan 2020. ISSN
0028-4793. doi: 10.1056/nejmoa2001316.

Danilo Dolenc. Vsaka peta dvostarSevska druzina je zunajzakonska skupnost, 2018. URL
https://www.stat.si/StatWeb/News/Index/7725.

Lada A. Adamic, Rajan M. Lukose, Amit R. Puniyani, and Bernardo A. Huberman. Search
in power-law networks. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related
Interdisciplinary Topics, 64(4):8, sep 2001. ISSN 1063651X. doi: 10.1103/PhysRevE.64.
046135.

Joseph Norman, Yaneer Bar-Yam, and Nicholas Taleb. Systemic Risk of Pandemic via Novel
Pathogens-Coronavirus: A Note. Technical report, 2020.

S. Y. Del Valle, J. M. Hyman, H. W. Hethcote, and S. G. Eubank. Mixing patterns between
age groups in social networks. Social Networks, 29(4):539-554, oct 2007. ISSN 03788733. doi:
10.1016/j.socnet.2007.04.005.

Joél Mossong, Niel Hens, Mark Jit, Philippe Beutels, Kari Auranen, Rafael Mikolajczyk,
Marco Massari, Stefania Salmaso, Gianpaolo Scalia Tomba, Jacco Wallinga, Janneke Heijne,
Malgorzata Sadkowska-Todys, Magdalena Rosinska, and W. John Edmunds. Social contacts
and mixing patterns relevant to the spread of infectious diseases. PLoS Medicine, 5(3):0381—
0391, mar 2008. ISSN 15491277. doi: 10.1371/journal.pmed.0050074.

Joseph T. Wu, Kathy Leung, and Gabriel M. Leung. Nowcasting and forecasting the potential
domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China:
a modelling study. The Lancet, 395(10225):689-697, feb 2020. ISSN 1474547X. doi: 10.1016/
S0140-6736(20)30260-9.

Adam J Kucharski, Timothy W Russell, Charlie Diamond, Yang Liu, CMMID nCoV work-
ing Group, John Edmunds, Sebastian Funk, and Rosalind M Eggo. Early dynamics of
transmission and control of COVID-19: a mathematical modelling study. medRziv, page
2020.01.31.20019901, feb 2020. doi: 10.1101/2020.01.31.20019901.

Ying Liu, Albert A Gayle, Annelies Wilder-Smith, and Joacim Rocklév. The reproduc-
tive number of COVID-19 is higher compared to SARS coronavirus. Journal of Travel
Medicine, 2020:1-4, 2020. doi: 10.1093/jtm/taaa021. URL https://academic.oup.com/
jtm/article-abstract/27/2/taaa021/5735319.

Yang Liu, Rosalind M Eggo, and Adam J Kucharski. Secondary attack rate and superspread-
ing events for SARS-CoV-2. The Lancet, 395(10227):e47, mar 2020. ISSN 0140-6736. doi:
10.1016/50140-6736(20)30462- 1.

Rachel M. Burke, Claire M. Midgley, Alissa Dratch, Marty Fenstersheib, Thomas Haupt,
Michelle Holshue, Isaac Ghinai, M. Claire Jarashow, Jennifer Lo, Tristan D. McPherson,
Sara Rudman, Sarah Scott, Aron J. Hall, Alicia M. Fry, and Melissa A. Rolfes. Active
Monitoring of Persons Exposed to Patients with Confirmed COVID-19 — United States,
January—February 2020. MMWR. Morbidity and Mortality Weekly Report, 69(9):245-246,
mar 2020. ISSN 0149-2195. doi: 10.15585/mmwr.mm6909el. URL http://www.cdc.gov/
mmwr/volumes/69/wr/mm6909el.htm?s{_}cid=mm6909e1{_}w.

14


https://www.stat.si/StatWeb/News/Index/7725
https://academic.oup.com/jtm/article-abstract/27/2/taaa021/5735319
https://academic.oup.com/jtm/article-abstract/27/2/taaa021/5735319
http://www.cdc.gov/mmwr/volumes/69/wr/mm6909e1.htm?s{_}cid=mm6909e1{_}w
http://www.cdc.gov/mmwr/volumes/69/wr/mm6909e1.htm?s{_}cid=mm6909e1{_}w

[20]

23]

Qifang Bi, Yongsheng Wu, Shujiang Mei, Chenfei Ye, Xuan Zou, Zhen Zhang, Xiaojian Liu,
Lan Wei, Shaun A Truelove, Tong Zhang, Wei Gao, Cong Cheng, Xiujuan Tang, Xiaoliang
Wu, Yu Wu, Binbin Sun, Suli Huang, Yu Sun, Juncen Zhang, Ting Ma, Justin Lessler, and
Teijian Feng. Epidemiology and Transmission of COVID-19 in Shenzhen China: Analysis of
391 cases and 1,286 of their close contacts. medRziv, page 2020.03.03.20028423, mar 2020.
doi: 10.1101,/2020.03.03.20028423.

Robert Verity, Lucy C Okell, Tlaria Dorigatti, Peter Winskill, Charles Whittaker, Natsuko
Imai, Gina Cuomo-Dannenburg, Hayley Thompson, Patrick Walker, Han Fu, Amy Dighe,
Jamie Griffin, Anne Cori, Marc Baguelin, Sangeeta Bhatia, Adhiratha Boonyasiri, Zulma M
Cucunuba, Rich Fitzjohn, Katy A M Gaythorpe, Will Green, Arran Hamlet, Wes Hinsley,
Daniel Laydon, Gemma Nedjati-Gilani, Steven Riley, Sabine Van-Elsand, Erik Volz, Haowei
Wang, Yuanrong Wang, Xiayoue Xi, Christl Donnelly, Azra Ghani, and Neil Ferguson. Es-
timates of the severity of COVID-19 disease. medRziv, page 2020.03.09.20033357, mar 2020.
doi: 10.1101,/2020.03.09.20033357.

Timothy W. Russell, Joel Hellewell, Sam Abbott, Christopher I Jarvis, Kevin van Zandvoort,
Ruwan Ratnayake, Working Group CMMID NCov, Stefan Flasche, Rosalind Eggo, John
Edmunds, and Adam J Kucharski. Using a delay-adjusted case fatality ratio to estimate
under-reporting — CMMID Repository, 2020. URL https://cmmid.github.io/topics/
covidl9/severity/global{_}cfr{_l}estimates.html.

Joseph T. Wu, Kathy Leung, Mary Bushman, Nishant Kishore, Rene Niehus, Pablo M.
de Salazar, Benjamin J. Cowling, Marc Lipsitch, and Gabriel M. Leung. Estimating clinical
severity of COVID-19 from the transmission dynamics in Wuhan, China. Nature Medicine,
pages 1-5, mar 2020. ISSN 1078-8956. doi: 10.1038/s41591-020-0822-7. URL http://www.
nature.com/articles/s41591-020-0822-7.

Neil M Ferguson, Daniel Laydon, Gemma Nedjati-Gilani, Natsuko Imai, Kylie Ainslie,
Marc Baguelin, Sangeeta Bhatia, Adhiratha Boonyasiri, Zulma Cucunubd, Gina Cuomo-
Dannenburg, Amy Dighe, Ilaria Dorigatti, Han Fu, Katy Gaythorpe, Will Green, Arran
Hamlet, Wes Hinsley, Lucy C Okell, Sabine Van Elsland, Hayley Thompson, Robert Verity,
Erik Volz, Haowei Wang, Yuanrong Wang, Patrick Gt Walker, Caroline Walters, Peter Win-
skill, Charles Whittaker, Christl A Donnelly, Steven Riley, and Azra C Ghani. Impact of non-
pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand.
COVID-19 Reports, 9, 2020. doi: 10.25561/77482. URL https://doi.org/10.25561/77482.

PopulationPyramid.net. Population Pyramid. URL https://www.populationpyramid.net/
slovenia/2019/.

Natalie M Linton, Tetsuro Kobayashi, Yichi Yang, Katsuma Hayashi, Andrei R Akhmet-
zhanov, Sung-Mok Jung, Baoyin Yuan, Ryo Kinoshita, and Hiroshi Nishiura. Incuba-
tion Period and Other Epidemiological Characteristics of 2019 Novel Coronavirus Infections
with Right Truncation: A Statistical Analysis of Publicly Available Case Data. Journal
of clinical medicine, 9(2), feb 2020. ISSN 2077-0383. doi: 10.3390/jcm9020538. URL
http://www.ncbi.nlm.nih.gov/pubmed/32079150.

Tao Liu, Jianxiong Hu, Min Kang, Lifeng Lin, Haojie Zhong, Jianpeng Xiao, Guanhao He,
Tie Song, Qiong Huang, Zuhua Rong, Aiping Deng, Weilin Zeng, Xiaohua Tan, Siging Zeng,
Zhihua Zhu, Jiansen Li, Donghua Wan, Jing Lu, Huihong Deng, Jianfeng He, and Wenjun Ma.
Time-varying transmission dynamics of Novel Coronavirus Pneumonia in China. bioRziv, page
2020.01.25.919787, jan 2020. doi: 10.1101/2020.01.25.919787. URL https://www.biorxiv.
org/content/10.1101/2020.01.25.919787v1.

Roman Woelfel, Victor Max Corman, Wolfgang Guggemos, Michael Seilmaier, Sabine Zange,
Marcel A Mueller, Daniela Niemeyer, Patrick Vollmar, Camilla Rothe, Michael Hoelscher,
Tobias Bleicker, Sebastian Bruenink, Julia Schneider, Rosina Ehmann, Katrin Zwirglmaier,

15


https://cmmid.github.io/topics/covid19/severity/global{_}cfr{_}estimates.html
https://cmmid.github.io/topics/covid19/severity/global{_}cfr{_}estimates.html
http://www.nature.com/articles/s41591-020-0822-7
http://www.nature.com/articles/s41591-020-0822-7
https://doi.org/10.25561/77482
https://www.populationpyramid.net/slovenia/2019/
https://www.populationpyramid.net/slovenia/2019/
http://www.ncbi.nlm.nih.gov/pubmed/32079150
https://www.biorxiv.org/content/10.1101/2020.01.25.919787v1
https://www.biorxiv.org/content/10.1101/2020.01.25.919787v1

[30]

[31]

[32]

[33]

[36]

[39]

Christian Drosten, and Clemens Wendtner. Clinical presentation and virological assessment
of hospitalized cases of coronavirus disease 2019 in a travel-associated transmission cluster.
medRziv, page 2020.03.05.20030502, mar 2020. doi: 10.1101/2020.03.05.20030502.

Fei Zhou, Ting Yu, Ronghui Du, Guohui Fan, Ying Liu, Zhibo Liu, Jie Xiang, Yeming Wang,
Bin Song, Xiaoying Gu, Lulu Guan, Yuan Wei, Hui Li, Xudong Wu, Jiuyang Xu, Shengjin
Tu, Yi Zhang, Hua Chen, and Bin Cao. Clinical course and risk factors for mortality of adult
inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet, 0(0),
mar 2020. ISSN 01406736. doi: 10.1016/s0140-6736(20)30566-3.

Luca Ferretti, Chris Wymant, Michelle Kendall, Lele Zhao, Anel Nurtay, David G Bon-
sall, and Christophe Fraser. Quantifying dynamics of SARS-CoV-2 transmission suggests
that epidemic control and avoidance is feasible through instantaneous digital contact trac-
ing. medRxiv, page 2020.03.08.20032946, mar 2020. doi: 10.1101,/2020.03.08.20032946. URL
https://www.medrxiv.org/content/10.1101/2020.03.08.20032946v1.

Sam Abbott, Joel Hellewell, James D Munday, June Young Chun, Robin N.
Thompson, Nikos I Bosse, Yung-Wai Desmond Chan, Timothy W Russell, Christo-
pher Jarvis, Stefan Flasche, Adam J Kucharski, Rosalind FEggo, and Sebas-
tian Funk. Temporal variation in transmission during the COVID-19 outbreak
— CMMID Repository, 2020. URL https://cmmid.github.io/topics/covid19/
current-patterns-transmission/global-time-varying-transmission.html.

Kenji Mizumoto, Katsushi Kagaya, Alexander Zarebski, and Gerardo Chowell. Estimating
the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the
Diamond Princess cruise ship, Yokohama, Japan, 2020. Furosurveillance, 25(10):2000180,
mar 2020. ISSN 1560-7917. doi: 10.2807/1560-7917.es.2020.25.10.2000180.

Hiroshi Nishiura, Tetsuro Kobayashi, Takeshi Miyama, Ayako Suzuki, Sungmok Jung, Kat-
suma Hayashi, Ryo Kinoshita, Yichi Yang, Baoyin Yuan, Andrei R Akhmetzhanov, and
Natalie M Linton. Estimation of the asymptomatic ratio of novel coronavirus (2019-nCoV)
infections among passengers on evacuation flights, feb 2020.

Alexander F Siegenfeld and Yaneer Bar-Yam. Working Paper Eliminating COVID-19: A
Community-based Analysis. Technical report, 2020.

Joel Hellewell, Sam Abbott, Amy Gimma, Nikos I Bosse, Christopher I Jarvis, Timothy W
Russell, James D Munday, Adam J Kucharski, W John Edmunds, CMMID nCoV working
Group, Sebastian Funk, and Rosalind M Eggo. Feasibility of controlling 2019-nCoV outbreaks
by isolation of cases and contacts. medRziv, page 2020.02.08.20021162, feb 2020. doi: 10.
1101,/2020.02.08.20021162.

Shu Ming Duan, Xin Sheng Zhao, Rui Fu Wen, Jing Jing Huang, Guo Hua Pi, Su Xiang
Zhang, Jun Han, Sheng Li Bi, L. Ruan, and Xiao Ping Dong. Stability of SARS Coronavirus
in Human Specimens and Environment and Its Sensitivity to Heating and UV Irradiation.
Biomedical and Environmental Sciences, 16(3):246-255, sep 2003. ISSN 08953988.

Peter Bauer, Alan Thorpe, and Gilbert Brunet. The quiet revolution of numerical weather
prediction, sep 2015. ISSN 14764687.

Zhidong Cao, Qingpeng Zhang, Xin Lu, Dirk Pfeiffer, Lei Wang, Hongbing Song, Tao Pei,
Zhongwei Jia, and Daniel Dajun Zeng. Incorporating Human Movement Data to Improve
Epidemiological Estimates for 2019-nCoV. medRziv, page 2020.02.07.20021071, feb 2020.
doi: 10.1101/2020.02.07.20021071. URL http://medrxiv.org/content/early/2020/02/
09/2020.02.07.20021071.abstract.

Pearu Peterson. F2PY: a tool for connecting Fortran and Python programs. International
Journal of Computational Science and Engineering, 4(4):296-305, 2009.

16


https://www.medrxiv.org/content/10.1101/2020.03.08.20032946v1
https://cmmid.github.io/topics/covid19/current-patterns-transmission/global-time-varying-transmission.html
https://cmmid.github.io/topics/covid19/current-patterns-transmission/global-time-varying-transmission.html
http://medrxiv.org/content/early/2020/02/09/2020.02.07.20021071.abstract
http://medrxiv.org/content/early/2020/02/09/2020.02.07.20021071.abstract

Code availability

The model is freely available at https://github.com/zaplotnik/korona/code. The core pro-
gram is written in Python 2.7 and requires standard scipy, numpy and matplotlib libraries.
Computationally critical parts of the program are written in Fortran. Python bindings are cre-
ated using F2PY [39]

f2py -c generate_connections.f90 -m generate_connections

Fortran random number generator (random.f90) is taken from Allan Miller’s Fortran Software
repository https://jblevins.org/mirror/amiller/.
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